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J. Phys. A: Math. Gen., Vol. 11, No. 5 ,  1978. Printed in Great Britain 

On the derivation of the fluctuation-dissipation theorem 

B U Felderhof 
Institut fur Theoretische Physik A, RWTH Aachen, TH-Enveiterungsgelande Seffent- 
Melaten, 5100 Aachen, Germany 

Received 11 August 1977 

Abstract, We give a critical analysis of a derivation due to Kubo of the fluctuation- 
dissipation theorem for classical systems. It is shown that a basic assumption having the 
appearance of a causality condition actually should be understood as an incidental corol- 
lary of the equations. 

1. Introduction 

Some years ago Kubo (1966) gave a very interesting derivation of the fluctuation- 
dissipation theorem for classical systems. Using as an example the Brownian motion 
of a particle with a retarded friction coefficient he derived the theorem from a 
minimum of assumptions. Since these assumptions appeared self-evident he seemed 
to have achieved a derivation which obviated postulating the theorem on the basis of a 
generalised Onsager hypothesis. 

Kubo defined the random force R( t )  acting on the Brownian particle relative to a 
chosen initial time, say t = 0. One of his assumptions reads 

where u(0)  is the velocity of the particle at time t = O .  This equation has the 
appearance of a causality condition and seems self-evident. Though we do not doubt 
its validity we shall argue that this equation is not fundamental and should rather be 
considered as a corollary. We regard the fluctuation-dissipation theorem as a basic 
postulate of non-equilibrium statistical mechanics and contend that it cannot be 
derived from more fundamental principles. 

2. Kubo’s derivation of the fluctuation-dissipation theorem 

The equation of motion for the average velocity of a Brownian particle in one 
dimension reads 

y ( t  - t ’ )(u (t’)) dt’ = K ( t ) ,  (2.1) 

where m is the mass of the particle, U ( t )  its velocity, y ( t  - t’) represents the retarded 
effect of the frictional force, and K ( t )  is the external force. In terms of Fourier 
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922 B U Felderhof 

transforms 

U" =- Iw u ( t )  eiw' dt, K" =- IT K(t)e'"' dt, (2.2) 2Tl -T 2Tl --OD 

equation (2.1) becomes 

where the admittance Y ( w )  is given by 

1 1 
m - io+q(w)  

Y(w) = - 

with 
rw 

? ( U )  = J eiw' y ( t )  dt. 
0 

Kubo (1966) considers the following generalised Langevin equation for the sto- 
chastic motion of the particle: 

mli(t)+m ~ ~ ( r - r ~ ) ~ ( r ~ ) d r ~ = K ( t ) + R ( t ) ,  t > 0 ,  (2.6) 

where R( t )  is the random force. About the random force he assumes that it averages 
to zero, 

= 0, (2.7) 

(R (0)) = 0, t>0,  (2.8) 

that for t > 0 it is not correlated with the velocity U (0), 

and that it does not depend on the external force K. Furthermore he assumes that in 
the absence of the external force the stochastic process u ( t )  is stationary, i.e. for 
K(t)  = 0 the correlation function 

*(7)= (u ( t  + 7 ) U ( t ) )  (2.9) 

( U * )  = kT/m. (2.10) 

does not depend on t. Finally he uses the equilibrium variance 

From equations (2.6)-(2.8) one finds 

1 
- i w + q ( w ) '  

@(U)=  eiWW(7) d7 = ( U ' )  (2.11) 

so that, using equations (2.4) and (2.10), 

@ ( U )  = kTY(w). (2.12) 

Kubo calls this the first fluctuation-dissipation theorem. Using the stationarity of the 
stochastic process U ( t )  he goes on to show that 

p ei"'(R(7)R(0)) d7 = kTmq(w),  

which he calls the second fluctuation-dissipation theorem. 

(2.13) 
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Equations (2.12) and (2.13) can be regarded as expressions for the correlation 
functions of the velocity and the random force in terms of the macroscopic friction 
coefficient. Conversely they can be used to evaluate the friction coefficient if the 
correlation functions can be calculated from a microscopic theory. The equations 
have been derived with a minimum of assumptions. 

3. Nyquist’s theorem 

We contrast the derivation of equations (2.12) and (2.13) to similar equations 
obtained by postulating the validity of Nyquist’s theorem (Nyquist 1928). In writing 
equation (2.6) one has broken the time-translation invariance of the description and 
the random force R( t )  is defined with respect to the chosen time t = 0. The proper 
time-translation invariant generalisation of equation (2.1) is given by 

f *  

mu(t)+m J y( t - t ’ )u( t ’ )d t ‘=K(t )+L( t ) ,  (3.1) 
-02 

where L(t)  is the stochastic or Langevin force (denoted as R‘(t) by Kubo). It is related 
to the random force R ( t )  by 

f0 

R ( t )  = L(t)-  m J y ( t  - t ’)u ( t ’ )  dt’. (3 -2) 
--33 

In order to apply Nyquist’s theorem one must first verify that u(t) and K ( t )  occur as a 
pair of conjugate variables in the energy dissipated by the system. The energy 
absorbed by the system up to time t under the influence of the external force K ( t )  on 
the average is given by 

P ( t ) =  I f  (u(t’))K(t‘)dt’. 
-CO 

(3.3) 

The statement that this is positive for all t, and that (u(t)) and K ( t )  are linearly related 
defines a linear passive system implying certain analyticity properties of the admit- 
tance Y(w) in the complex w-plane (Meixner 1965). In the absence of the external 
force K ( t )  the fluctuating velocity and the stochastic force are related by 

U, = Y(w)L,, (3.4) 

as follows from equation (3.1). According to Nyquist’s (1928) theorem the spectrum 
of the stochastic force is given by 

kT 
(LLzf)=-ReZ(w)S(w-w’),  (3.5) 

7T 

where Z ( w )  is the impedance, which is the inverse of the admittance, 

Y(w)Z(w)= 1. (3.6) 

From equations (3.4) and (3.5) it follows that the spectrum of the velocity fluctuations 
is given by 

kT 
(u,ut,) = - Re Y(w)G(w -U ’ ) .  (3.7) .ir 
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If we write these spectra in the form 

(LLZ*) = S t r ( w ) S b  --"I, ( U , U 2 f l )  = S,,(w)S(w - U ' ) ,  (3.8) 

then according to the Wiener-Khinchin theorem the functions SLL(W) and S,, (w ) are 
the Fourier transforms of the time correlation functions 

1 
S ~ L ( W )  = (L(t  + 7)L(t))  eio7 d7, (3.9u) 

m 

S . , , ( U ) = ~ /  (u(t+7)u(f))eio7 d7. (3.9b) 

Equations (3.7) and (3.9b) are equivalent to equation (2.12). We note that equation 
(2.10) follows from (2.12) by considering (3.6) for large W .  From equations (3.5) and 
( 3 . 9 ~ )  it follows by use of (2.4) and (3.6) that 

2T -m 

e'"'(L(t + 7)L(t))  d7 = mkT$(w).  (3.10) 

Using the definition (3.2) of the random force and equation (2.12) one hence derives 
(2.13). Thus one has 

(L(t-t7)L(t))= r(7)=(R(7)R(o)) (3.11) 

with 

r(7) = mkTy(lT1). (3.12) 

In this section the correlation functions of the stochastic force and of the velocity 
have been obtained by postulate rather than by derivation. The Nyquist theorem 
must be regarded as a generalised Onsager hypothesis. This hypothesis can be 
circumvented by the minimum of assumptions formulated in the preceding section. In 
the sequel we shall argue, however, that equation (2.8) is less fundamental than it 
appears to be. 

4. Deductions from Nyquist's theorem 

We can draw further conclusions from the spectra postulated in the preceding section. 
The defining equation (3.2) for the random force R(t )  can be written for K ( t ) =  0 

R(t)= mli(t)+m y(t-t')u(t')dt'. (4.1) Ib 
We regard this as a definition of R ( t )  for both positive and negative t with y (  - t )  = 
y(t).  One now shows straightforwardly by use of equations (2.10) and (2.12) 

(R ( t )u  (0))  = 0, for all t. (4.2) 

Thus equation (2.8), which derives a certain plausibility from its appearance as a 
statement of causality, is in fact only part of equation (4.2) and the latter equation for 
t < 0 has no intuitive appeal. 

Using equation (4.1) one can express the time correlation function (R ( t  + 7)R ( t ) )  
in terms of (U ( t  + 7)u  ( t ) ) .  Surprisingly, if one evaluates the derivative of ( R  (t + 7)R ( t ) )  
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with respect to t one finds that it vanishes. Hence one has, using equation (3.11), 

(R (t  + 7 ) ~  ( t ) )  = rw, (4.3) 

which makes it appear that R ( t )  is a stationary random process. In fact, of course, it is 
not, as one sees by forming the time derivative 

where /3 = l / k T .  From equations (4.2) and (4.4) it follows that 

(R(t+T)U(t))=p /‘r(t’+T)p(f’)dt‘. 0 (4.5) 

Hence equation (4.2) appears as a somewhat fortuitous corollary of the definition 
(4.1) of the random force R(t).  If one evaluates the time correlation of the stochastic 
force L(t)  with u ( t )  one finds 

41 

(L ( t+r )u ( t ) )=B r(t‘+T)p(f’)dt’ 
0 

(4.6) 

independent of t. For large t the random force R (t) becomes a stationary process and 
equation (4.5) reduces to (4.6). 

5. Extension to bound particle and more dimensions 

The theory is easily extended to the case where the particle is bound. In the linear 
theory the binding potential is approximated by an harmonic one. The stochastic 
equation of motion (3.1) now becomes 

.f  

The impedance is now given by 
2 mo 0 Z ( W ) =  -iom - -+m?(w).  

1W 

Considering the identity (3.6) in the limit w + O  and using equation (2.12) one finds 

(x2) = kT/mwE (5.3) 
which complements equation (2.10). The fluctuation spectra of the stochastic force 
and of the velocity are again given by equations (3.5) and (3.7) and one easily checks 
that with the modified definition of the random force, 

R ( t )  = mri(t)+ mw?jx(t)+ m y ( t  - t’)u (t‘) dt‘ (5.4) 6‘ 
all proofs of the preceding section remain valid. In addition one shows that 

(R (t)x (0)) = 0, for all t .  ( 5 . 5 )  
In the generalisation to more dimensions it is convenient to consider variables x(t) 

with zero thermal average, (x) = 0, and to define corresponding velocities u ( t )  = i ( t ) .  
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The generalised equation of motion becomes 

A . l i ( t )+ B . x ( t ) + p  r(t - t’) . u ( t ’ )  dt’ = K ( t )  + q t ) .  (5.6) L 
For the application of Nyquist’s theorem one must check that ( u ( t ) )  and (K( t ) )  appear 
as conjugate variables in the energy dissipation, as in equation (3.3). The impedance 
matrix becomes 

(5.7) 
B 

Z ( W ) =  iwA--+pf(w), 
1W 

and its inverse is the admittance matrix Y(o) = Z(W)- ’ .  The Nyquist theorem for the 
stochastic force and for the fluctuating velocities in the absence of the external force 
K ( t )  now reads 

(5.8) 

As before one shows that the matrices A and B are related to the equilibrium 
fluctuations by 

A = kT(uu) - ’ ,  B = k T ( x x ) - ’ .  (5.9) 

It is easily checked that with the definition of the random force 

R(t) = A . r i ( t )+  B . x ( t ) i -  p J ‘ r(t - t i )  . u ( t ’ )  dt’, 
0 

(5.10) 

with r( - t )  = f(t), the previous proofs can be carried through in matrix notation. 
Finally, we note that the equations can be rewritten to fit the framework of the 

Mori formalism (Mori 1965). The random force which occurs in Mori’s theory is 
defined in terms of the microscopic Hamiltonian equations of motion. It can be shown 
to have the properties we have derived above. 

6 .  Conclusion 

In our opinion Kubo’s derivation of the fluctuation-dissipation theorem as sketched in 
0 2 is deceptively simple. The basic assumption (equation (2.8)) appears plausible as it 
seems to express a causality property. As we have shown, it must be regarded as part 
of equation (4.2) and thereby loses its intuitive appeal. The proper Langevin force 
L(t) ,  which is a realisation of a stationary random process in contrast to the random 
force R(t) ,  does have correlations with the velocity at previous times, as shown 
explicitly in equation (4.6). We regard equation (2.8) as an incidental corollary to 
which no great significance should be attached. The statement that the equilibrium 
time correlation functions for the fluctuations can be expressed in terms of the 
coefficients occurring in the macroscopic equations is a fundamental assumption of 
statistical mechanics and is to be regarded as a generalised Onsager hypothesis. We 
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feel that from a didactic point of view the fluctuation-dissipation theorem is best made 
plausible by means of a simple model system, as treated, for example, by Becker 
(1967). 
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